angel

Spark on Angel 快速入门

部署流程

运行example

#! /bin/bash
source ./spark-on-angel-env.sh
$SPARK_HOME/bin/spark-submit \
    --master yarn-cluster \
    --conf spark.ps.jars=$SONA_ANGEL_JARS \
    --conf spark.ps.instances=10 \
    --conf spark.ps.cores=2 \
    --conf spark.ps.memory=6g \
    --queue g_teg_angel.g_teg_angel-offline \
    --jars $SONA_SPARK_JARS \
    --name "BreezeSGD-spark-on-angel" \
    --driver-memory 10g \
    --num-executors 10 \
    --executor-cores 2 \
    --executor-memory 4g \
    --class com.tencent.angel.spark.examples.ml.BreezeSGD \
    ./../lib/spark-on-angel-examples-${ANGEL_VERSION}.jar

提交Spark on Angel任务

Spark on Angel的任务本质上是一个Spark的Application,完成Spark on Angel的程序编写打包后,通过spark-submit的脚本提交任务。 不过,Spark on Angel提交的脚本有以下几个不同的地方:

任务成功提交后,YARN将会出现两个Application,一个是Spark Application, 一个是Angel-PS Application。

支持运行模式

同时支持YARN和Local两种运行模型,方便用户在本地调试程序

Example Code: Gradient Descent的Angel PS实现

下面是一个简单版本的Gradient Descent的PS实现

val context = PSContext.getOrCreate()
val pool = context.createModelPool(dim, poolCapacity)
val w = pool.createModel(initWeights)
val gradient = pool.zeros()

for (i <- 1 to ITERATIONS) {
  val totalG = gradient.mkRemote()

  val nothing = points.mapPartitions { iter =>
    val brzW = new DenseVector(w.mkRemote.pull())

    val subG = iter.map { p =>
      p.x * (1 / (1 + math.exp(-p.y * brzW.dot(p.x))) - 1) * p.y
    }.reduce(_ + _)

    totalG.incrementAndFlush(subG.toArray)
    Iterator.empty
  }
  nothing.count()

  w.mkBreeze += -1.0 * gradent.mkBreeze
  gradient.mkRemote.fill(0.0)
}

println("feature sum:" + w.mkRemote.pull())

gradient.delete()
w.delete()